A novel determination of the critical temperature
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A key to an analyses of nuclear multifragmentation data
leading to the nuclear matter phase diagram [1] was Fisher’s
droplet model [2]. At coexistence Fisher’s model gives the
temperature T cluster yields as

ns(T) [0 &(s)exp(—ws/T) 0]

where s is the cluster’s surface area, g(s) is proportional to the
cluster’s degeneracy, w is the surface tension.

Based on the combinatorics of two dimensional clusters
Fisher suggested g(s) would be given by

g(s) [ s “exp(ws) @)

where x is set by the Euclidian dimension and @ is the surface
entropy tension. Figure. 1 shows Eq. (2) describes a direct
counting of these cluster combinatorics [3].
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FIG. 1: Degeneracy factor for polygons on the square lattice.

Inserting Eq. (2) into Eq. (1) yields
ns(T) [ s *exp[—s(w—Tw) /T] 3)

The exponential’s argument is the free energy AG. At the
critical temperature 7, AG = 0 and T, = w/w. For the two
dimensional Ising model (isomorphous with the lattice gas)
w = 2 and with the Fig. 1 parameters 7'c = 2.06, within 10%
of Onsager’s value T, = 2.26915.... [5].

To make a better estimate of 7, we think of an initial con-
figuration of a liquid drop with A¢ constituents and surface s
and a final state of a cluster of A constituents and surface s
and its complement: a liquid drop of Agp — A constituents and
surface s.. This assumes stochastic cluster formation and is
supported by the Ising cluster’s Poissonian nature [4]. Now

AG = AE —TAS+ pAV

= eo[A+ (Ao —A) —Ao] +w(s+sc.—s0)

— T(ing(s) +1Ing(sc) —Ing(so)| +pAV ~ (4)
where e is the volume energy coefficient, p is the pressure
and AV is the volume change. All terms [] A cancel. In the
large liquid drop limit s, /= sp and Ing(s;) ~ Ing(so) leaving
only the cluster’s contribution to the AG. The volume change
for the lattice gas is

AV = [A+ (Ao — A) — Ao] + (s + s — 50) (5)

where [ is the interaction range between two constituents, one
spacing on a lattice: / = 1. In in the large drop limit the first
part of Eq. (5) cancels and the second part depends only on
the cluster’s surface so Eq. (1) becomes

ns(T) O g(s)exp(—ws/T)exp(2pls/T)
0 s “exp[—s(w+2pl—Tw)/T]. (6)

The factor of two arises from moving the cluster from the lig-
uid to the vapor. The free energy vanishes at the critical point
so T, = (w+2p.l) /w with p, = 0.11 [6] T, = 2.29, within 1%
of the Onsager value.
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FIG. 2: Ising cluster yields compared to Eq. (1) and (6).

Equation (6) also provides a better description of Ising
cluster yields than Eq. (1). Figure 2 shows the Ising yields
(na(T) = [Qynas(T)) of a two dimensional square lattice of
side L = 80 and the predictions of Eq. (6) and (1) with no fit
parameters.
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